BOJ 7568 : 덩치[python3]
문제 우리는 사람의 덩치를 키와 몸무게, 이 두 개의 값으로 표현하여 그 등수를 매겨보려고 한다. 어떤 사람의 몸무게가 x kg이고 키가 y cm라면 이 사람의 덩치는 (x, y)로 표시된다. 두 사람 A 와 B의 덩치가 각각 (x, y), (p, q)라고 할 때 x > p 그리고 y > q 이라면 우리는 A의 덩치가 B의 덩치보다 "더 크다"고 말한다. 예를 들어 어떤 A, B 두 사람의 덩치가 각각 (56, 177), (45, 165) 라고 한다면 A의 덩치가 B보다 큰 셈이 된다. 그런데 서로 다른 덩치끼리 크기를 정할 수 없는 경우도 있다. 예를 들어 두 사람 C와 D의 덩치가 각각 (45, 181), (55, 173)이라면 몸무게는 D가 C보다 더 무겁고, 키는 C가 더 크므로, "덩치"로만 볼..
BOJ 9020 : 골드바흐의 추측[pypy3]
문제 1보다 큰 자연수 중에서 1과 자기 자신을 제외한 약수가 없는 자연수를 소수라고 한다. 예를 들어, 5는 1과 5를 제외한 약수가 없기 때문에 소수이다. 하지만, 6은 6 = 2 × 3 이기 때문에 소수가 아니다. 골드바흐의 추측은 유명한 정수론의 미해결 문제로, 2보다 큰 모든 짝수는 두 소수의 합으로 나타낼 수 있다는 것이다. 이러한 수를 골드바흐 수라고 한다. 또, 짝수를 두 소수의 합으로 나타내는 표현을 그 수의 골드바흐 파티션이라고 한다. 예를 들면, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, 12 = 5 + 7, 14 = 3 + 11, 14 = 7 + 7이다. 10000보다 작거나 같은 모든 짝수 n에 대한 골드바흐 파티션은 존재한다. 2보다 큰 짝수..
BOJ 4948 : 베르트랑 공준
문제 베르트랑 공준은 임의의 자연수 n에 대하여, n보다 크고, 2n보다 작거나 같은 소수는 적어도 하나 존재한다는 내용을 담고 있다. 이 명제는 조제프 베르트랑이 1845년에 추측했고, 파프누티 체비쇼프가 1850년에 증명했다. 예를 들어, 10보다 크고, 20보다 작거나 같은 소수는 4개가 있다. (11, 13, 17, 19) 또, 14보다 크고, 28보다 작거나 같은 소수는 3개가 있다. (17,19, 23) 자연수 n이 주어졌을 때, n보다 크고, 2n보다 작거나 같은 소수의 개수를 구하는 프로그램을 작성하시오. 풀이 사실 이 문제는 그냥 풀이를 하기 보다는 '저런 공부를 하는 사람도 있구나'하는 생각에 코드를 공유한다. 앞에 푼 에라토스테네스의 체 같은 문제가 차라리 세상 사는데 도움은 되는 거..